3. 查找算法
本文最后更新于 2024-07-06,文章内容可能已经过时。
3. 查找算法
查找(search)是在一个数据结合中查找满足给定条件的记录。对于查找问题来说,没有一种算法对于任何情况下都是合适的。有的查找速度比其他算法快,但是需要较多的存储空间(例如 Hash 查找);有的算法查找速度非常快,但仅用于有序数组(例如折半查找)。在实际应用中,如何在特大型规模的数据集合上进行高效查找具有非常重要的意义。
一. 线性查找
/**
* desc 线性查找
* @author GreyPigeon mail:2371849349@qq.com
* @since 2024-01-14-19:34
**/
public class SeqSearch {
public static void main(String[] args) {
int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组
int index = seqSearch(arr, 11);
if(index == -1) {
System.out.println("没有找到");
} else {
System.out.println("找到,下标为=" + index);
}
}
/**
* 这里我们实现的线性查找是找到一个满足条件的值,就返回
* @param arr
* @param value
* @return
*/
public static int seqSearch(int[] arr, int value) {
// 线性查找是逐一比对,发现有相同值,就返回下标
for (int i = 0; i < arr.length; i++) {
if(arr[i] == value) {
return i;
}
}
return -1;
}
}
二. 二分查找(折半查找)
//注意:使用二分查找的前提是 该数组是有序的.
//方法一:使用递归
public class BinarySearch {
public static void main(String[] args) {
//int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11, 12, 13,14,15,16,17,18,19,20 };
int resIndex = binarySearch(arr, 0, arr.length - 1, 1000);
System.out.println("resIndex=" + resIndex);
}
/**
* 二分查找算法
* @param arr 数组
* @param left 左边的索引
* @param right 右边的索引
* @param findVal 要查找的值
* @return 如果找到就返回下标,如果没有找到,就返回 -1
*/
public static int binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return -1;
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}
```java
//方法二
//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {
public static void main(String[] args) {
//二分查找(折半查找)所要查找的数组必须有序
int[] arr =new int[] {-98,-67,-34,0,9,10,24,40,78,87};
int dest = 0;
int head=0;//初始首索引
int end= arr.length-1;//初始末索引
boolean isFlag1=true;
while(head<=end) {
int middle=(head+end)/2;
if(dest == arr[middle]) {
System.out.println("找到了,位置为:"+middle);
isFlag1=false;
break;
}
else if(dest < arr[middle]) {
end=middle-1;
}
else {
head=middle+1;
}
}
if(isFlag1==true) {
System.out.println("很遗憾,没找到!");
}
}
}
练习
//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {
public static void main(String[] args) {
//int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
int arr[] = { 1, 2, 3, 5, 5, 5, 5, 8, 9, 10 , 11, 12, 13,14,15,16,17,18,19,20 };
List<Integer> resIndexList = binarySearch(arr, 0, arr.length - 1, 5);
System.out.println("resIndexList=" + resIndexList);
}
/**
* 思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中,
* 有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000
* 思路分析
* 1. 在找到mid 索引值,不要马上返回
* 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 4. 将Arraylist返回
* @param arr
* @param left
* @param right
* @param findVal
* @return java.util.List<java.lang.Integer>
**/
public static List<Integer> binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return new ArrayList<Integer>();
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
/* 思路分析
* 1. 在找到mid 索引值,不要马上返回
* 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 4. 将Arraylist返回
*/
List<Integer> resIndexlist = new ArrayList<Integer>();
//向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
int temp = mid - 1;
while(true) {
if (temp < 0 || arr[temp] != findVal) {//退出
break;
}
//否则,就temp 放入到 resIndexlist
resIndexlist.add(temp);
temp -= 1; //temp左移
}
resIndexlist.add(mid);
//向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
temp = mid + 1;
while(true) {
if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
break;
}
//否则,就temp 放入到 resIndexlist
resIndexlist.add(temp);
temp += 1; //temp右移
}
return resIndexlist;
}
}
}
三. 插值查找
插值查找算法类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。
折半查找中的求mid 索引的公式 , low 表示左边索引left, high表示右边索引right.key 就是前面我们讲的 findVal:
插值查找注意事项
- 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快。
- 关键字分布不均匀的情况下,该方法不一定比折半查找要好。
public class InsertValueSearch {
public static void main(String[] args) {
int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
int index = insertValueSearch(arr, 0, arr.length - 1, 1234);
System.out.println("index = " + index);
}
/**
* 插值查找算法(说明:插值查找算法,也要求数组是有序的)
* @param arr 数组
* @param left 左边索引
* @param right 右边索引
* @param findVal 查找值
* @return 如果找到,就返回对应的下标,如果没有找到,返回-1
*/
public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
//注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要
//否则我们得到的 mid 可能越界
if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
return -1;
}
// 求出mid, 自适应
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
int midVal = arr[mid];
if (findVal > midVal) { // 说明应该向右边递归
return insertValueSearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 说明向左递归查找
return insertValueSearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}
四. 斐波那契(黄金分割法)查找算法
黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。
斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示:
对F(k-1)-1的理解:
- 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1
- 类似的,每一子段也可以用相同的方式分割但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。
/**
* desc 斐波那契查找算法(查找的数组需要有序)
* @author GreyPigeon mail:2371849349@qq.com
* @since 2024-01-18-12:43
**/
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int [] arr = {1,8, 10, 89, 1000, 1234};
System.out.println("index=" + fibSearch(arr, 189));// 0
}
//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
//非递归方法得到一个斐波那契数列
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
/**
* 编写斐波那契查找算法
* 使用非递归的方式编写算法
* @param a 数组
* @param key 我们需要查找的关键码(值)
* @return 返回对应的下标,如果没有-1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int k = 0; //表示斐波那契分割数值的下标
int mid = 0; //存放mid值
int f[] = fib(); //获取到斐波那契数列
//获取到斐波那契分割数值的下标
while(high > f[k] - 1) {
k++;
}
//因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
//不足的部分会使用0填充
int[] temp = Arrays.copyOf(a, f[k]);
//实际上需求使用a数组最后的数填充 temp
//举例:
//temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
for(int i = high + 1; i < temp.length; i++) {
temp[i] = a[high];
}
// 使用while来循环处理,找到我们的数 key
while (low <= high) { // 只要这个条件满足,就可以找
mid = low + f[k - 1] - 1;
if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
high = mid - 1;
//为甚是 k--
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
//即 在 f[k-1] 的前面继续查找 k--
//即下次循环 mid = f[k-1-1]-1
k--;
} else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
low = mid + 1;
//为什么是k -=2
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
//4. 即在f[k-2] 的前面进行查找 k -=2
//5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { //找到
//需要确定,返回的是哪个下标
if(mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}
- 感谢你赐予我前进的力量
赞赏者名单
因为你们的支持让我意识到写文章的价值🙏
本文是原创文章,采用 CC BY-NC-ND 4.0 协议,完整转载请注明来自 程序员Graypigeon
评论
匿名评论
隐私政策
你无需删除空行,直接评论以获取最佳展示效果